GPU Talk

Home » Technology » HSA Releases Ver. 0.95 of PRM Specification

HSA Releases Ver. 0.95 of PRM Specification

By Benson Tao (Vivante Corporation)

HSAFoundation-Logo

Background

The Heterogeneous System Architecture (HSA) Foundation is a not-for-profit consortium that brings together some of the best minds (and companies) across the mobile, PC, consumer, HPC, Compute/Vision industries, along with leading academic institutions and anyone that wants to join in on the fun. The goal of HSA is to create a single architecture specification and standard programming interface (API) that developers can easily adopt to optimize distributed workloads across the GPU, CPU, DSP, and any other compute fabric element on the platform. From a high level view, the platform or system (with all the different components) can be viewed as one large, unified processor that executes a given workload. The main goal is to get the biggest bang for the buck or operational efficiency that includes the highest computational throughput (performance) at the lowest power and thermal envelope. Industry participants in HSA include SoC vendors, IP providers, OEMs, OSVs, and a full range of ISVs and application developers that want to make the best use of platform capabilities.

Vivante Contributes to Platform Innovation

Vivante joined HSA Foundation with the intention of pushing forward a defined specification that advances GPU Compute technologies in mobile, embedded, and consumer platforms. Many of our new and existing customers look to us for guidance on ways to improve their existing platforms and problems they are “stuck” on. Improvements can be as minor as performance gains, reduced BOM (or silicon) costs, and power savings, to re-architecting their designs (through GPU programmability) to fit new use cases and applications so they can extend product lifecycles without incurring major financial costs to replace/upgrade the existing infrastructure. These are some of the ways Vivante looks at defining solutions and future-proofing GPU/GPGPU IP cores to help its customers.

Vivante has multiple products targeting hybrid platforms from mass market cores that have the smallest silicon footprint with OpenGL ES 3.0 and OpenCL 1.1/RS-FS, to mid range and high performance multi-cluster configurable cores. The GPUs work directly with the CPU through a unified memory system, ACE-Lite™ cache coherency, or a native stream interface that connects directly to various compute fabrics. The Vivante HSA design, like the OpenGL ES graphics stack, supports a unified software and hardware package that provides a single architecture spanning multiple operating systems, platforms, and GPU cores. Vivante HSA software will also be backwards compatibility with all existing compute-enabled products and built around HSA APIs and tools that complement our current OpenCL™ and Google Renderscript™/Filterscript support. By simplifying the lives of application developers targeting heterogeneous architectures, programmers can create breakthrough use cases that take advantage of the new paradigm shift to hybrid computing. Real world applications that are already being accelerated by Vivante cores include computer vision, image processing, augmented reality, sensor fusion, and motion processing, with some examples being in the automotive ADAS sector (Advanced Driver Assistance Systems).

HSA Releases Ver. O.95 of the Highly Anticipated Programmers Reference Manual (PRM)

The fruits of hard labor of many technical discussions and architecture meetings over the last year since the consortium’s founding in June 2012 has finally come full circle with the release of version 0.95 of the PRM. This manual is a major milestone and lays the foundation for HSA to successfully move forward as it continues defining the platform of the future. The PRM also gives developers an early start as ecosystem partners create amazing applications, tools, libraries, and middleware programs that work best on HSA certified products.

Some features highlighted in the specification include:

1) Shared Coherent (Virtual) Memory Models

2) Atomics

3) User Mode and GPU Queuing

4) Zero Copy

5) Low Latency Dispatch

The specification also includes HSAIL (HSA Intermediate Language), which abstracts away from the native instruction set of the hardware and can be compiled automatically, in real-time, to the native ISA of the underlying hardware without any developer involvement. The same OpenCL and Renderscript/Filterscript programs can be abstracted and run on HSA platforms also.

Link to HSA Foundation website: http://hsafoundation.com/

Link to HSA Foundation press release: http://hsafoundation.com/hsa-foundation-announces-first-specification/