GPU Talk

Home » 2013 » September

Monthly Archives: September 2013

Introducing Vega…the latest, most advanced GPUs from Vivante

By Benson Tao

Breaking News…

One of the latest headlines coming out of IDF 2013 in San Francisco today is the unveiling of a next generation GPU product line from Vivante. This technology continues to break through the the limits of size, performance, and power to help customers deliver unique products quickly and cost-effectively. The first generation solutions were introduced in 2007 (Generation 1) and upgraded again in 2010 (Generation 2) with new enhancements that were shipped in tens of millions of products. Gen 2 solutions already exceeded PC and console quality graphics rendering, which is the standard other GPU IP vendors strive to reach today. The next version (Gen 3) successfully hit key industry milestones by becoming the first GPU IP product line to pass OpenCL™ 1.1 conformance (CTS) and the first IP to be successfully designed into real time mission critical Compute applications for automotive (ADAS), computer vision, and security/surveillance. The early Gen 3 cores, designed and completed before the OpenGL ES 3.0 standard was fully ratified, were forward looking designs that have already passed OpenGL ES 3.0 conformance (CTS) and application testing. Many of the latest visually stunning games can be unleashed on the latest Gen 3 hardware found in leading devices like the Samsung Galaxy Tab 3 (7″), Huawei Ascend P6, Google Chromecast, GoogleTV 2.0/3/0, and other 4K TVs.

With the unveiling of Vivante’s fourth generation (codenamed “Vega”) ScalarMorphic architecture, the latest designs provide a foundation for Vivante’s newest series of low-power, high-performance, silicon-efficient GPU cores. Vivante engineering continues to respond quickly to industry developments and needs, and continuously refines and enhances its hardware specifications in order to remain at the top of the industry through partnerships with ecosystem vendors.

ProductsSample of Vivante Powered Products

What is Vega?

Vega is the latest, most advanced mobile GPU architecture from Vivante. Leveraging over seven years of architectural refinements and more than 100 successful mass market SOC designs, Vega is the cumulation of knowledge that blends high performance, full featured API support, ultra low power and programmability into a single, well defined product that changes the industry dynamics. SOC vendors can now double graphics performance and support the latest API standards like OpenGL ES 3.0 in the same silicon footprint as the previous generation OpenGL ES 2.0 products. Silicon vendors can also leverage the Vega design to achieve equivalent leading edge silicon process performance in a cost effective mainstream process. This effectively means that given the same SOC characteristics, a TSMC 40nm LP device can compete with a TSMC 28nm HPM version, at a more affordable cost that opens up the market to mainstream silicon vendors that were initially shut out of leading edge process fabrication due to their high initial costs.

Vega is also optimized for Google™ Android and Chrome products (but also supports Windows, BB OS and others), and fast forwards innovation by bringing tomorrow’s 3D and GPU Compute standards into today’s mass market products. Silicon proven to have the smallest die area footprint, graphics performance boost, and scalability across the entire product line, Vega cores extend Vivante’s current leadership in bringing all the latest standards to consumer electronics in the smallest silicon area. Vega 3D cores are adaptable to a wide variety of platforms from IoT (Internet-of-Things) and wearables, to smartphones, tablets, TV dongles, and 4K/8K TVs.

Whether you are looking for a tiny single shader stand-along 3D core or a powerhouse multi-core multi-shader GPU that can deliver high performance 3D and GPGPU functionality, Vivante has a market-proven solution ready to use. There are several options available when it comes to 3D GPU selection: 3D only cores, 3D cores designed with an integrated Composition Processing engine, and 3D cores with full GPGPU functionality that blend real-life graphics with GPU Compute. Vivante already is noted in the industry as the IP provider with the smallest, full-featured licensable cores in every GPU class.

Now let’s dive into some of the Vega listed features to see what they mean…

Hardware Features

  • ScalarMorphic™ architecture
    • Optimized for multi-GPU scalability and multi-threaded, multi-core heterogeneous platforms. This makes the GPU and GPU Compute cores as independent or cohesive as needed, flexible and developer friendly as new applications built on graphics + compute come online.
    • The same premium core architecture as previous generations is still intact, but it has been improved over time to remove inefficiencies. This also allows the same unified driver architecture to work with Vega cores and previous GC cores, so there is no waste of previous developer resources to re-code or overhaul apps for each successive Vivante GPU core.
    • Advanced scheduler and command dispatch unit for optimized shader load balancing and resource allocation.
    • Dynamic branching and non-constant varying indexing.
  • Ultra-threaded, unified shaders
    • Maximize graphics throughput, process millions of threads in parallel, and minimize latency.
    • The GPU scheduler and cores can process other threads while waiting for data to return from system memory, hiding latency and ensuring the cores are being used efficiently with minimal downtime. Context switching between threads is done automatically in hardware which costs zero cycles.
    • These shaders are more than just single way pipelines with added features that make the GPU more general purpose with multi-way pipelines to benefit various processing required for graphics and compute.
  • Patented math units that work in the Logarithmic space
    • In graphics there are different methods to calculate math and get the correct results.  With this method Vega cores can reduce area, power, and bandwidth that speeds up the overall system performance.
  • Fast, immediate hidden surface removal (HSR)
    • Eliminates render processing time by an average of 30% since a more advanced method to remove back-facing or obscure surfaces is implemented on the fly so minimal or no pre-processing time is wasted. This also goes beyond past versions where the GPU was automatically removing individual pixels (ex. early Z, HZ, etc.).
  • Power savings
    • Saves power up to 65% over previous GC Cores using intelligent DVFS and incremental low power architectural enhancements.
  • Proprietary Vega lossless compression
    • Reduces on-chip bandwidth by an average of 3.2:1 and streamlines the graphics subsystem including the GPU, composition co-processsor (CPC), interconnect, and memory and display subsystems. This is important to make sure the entire visual pipeline from when an app makes an API call to the output on the screen is smooth and crisp at optimal frame rates, with no artifacts or tearing regardless of the GPU loading.
  • Built-In Visual Intelligence
    • ClearView image quality – Life-like rendering with high definition detail, MSAA, and high dynamic range (HDR) color processing. This improves image quality, clarity, and matches real life colors that are not oversaturated.
    • Large display rendering – Up to 4K/8K screen resolution including multi-screen support that makes sure the GPU pipelines are balanced.
    • New additions using color correction can be implemented to correct color, increase color space using shaders (or OpenCL/RS-FS) or FRC.
    • NUIs can also take advantage of visual processing for motion and gesture.
  • Industry’s smallest graphics driver memory footprint
    • For the first time, smaller embedded or low end consumer devices and DDR-cost constrained systems can now support the latest graphics and various compute applications that fit those segments. With a smaller footprint you don’t need to increase system BOM cost by adding another memory chip, which is crucial in the cost sensitive markets.
    • There are also Vivante options that support DDR-less MCU/MPUs in the Vega series where no external DDR system memory exists.

More About the Shaders

  • Dynamic, reconfigurable shaders
    • Pipelined FP/INT double (64-bit), single/high (32-bit) and half precision/medium (16-bit) precision IEEE formats for GPU Compute and HDR graphics.
    • Multi-format support for flexibility when running compute in a heterogeneous architecture where coherency exists between CPU-GPU, high precision graphics, medium precision graphics, computational photography, and fast approximate calculations needed for fast, approximate calculations (for example, some image processing algorithms only need to approximate calculations for speed instead of accuracy). With these options, the GPU has full flexibility to target multiple applications.
    • High precision pipeline with support for long instructions.
  • Gigahertz Shaders
    • Updated pipeline enables shaders to run over 1 GHz, while lowering overall power consumption.
    • The high speed along with intelligent power management allows tasks to finish sooner and keep the GPU in a power savings state longer, so average power is reduced.
    • Cores scalable from tens of GFLOPS to over 1 TFLOP in various multi-core GPU versions.
  • Stream-Out Geometry Shaders
    • Increases on-chip GPU processing for realistic, HDR rendering with stream-out and multi-way pipelines.
    • The GPU is more independent when using GS since it can process, create and destroy vertices (and perform state changes) without taking CPU cycles. Previous versions required the CPU to pre-process and load states when creating vertices.

Application Programming Interface (API) Overview

Some of the APIs supported by Vega are listed below. This is not an exhaustive list but includes the key APIs in the industry and show the flexibility of the product line.

  • Full featured, native graphics API support includes:
    • Khronos OpenGL ES 3.0/2.0, OpenGL 3.x2.x, OpenVG 1.1, WebGL
    • Microsoft DirectX 11 (SM 3.0, Profile 9_3)
  • Full Featured, native Compute APIs and support:
    • Khronos OpenCL 1.2/1.1 Full Profile
    • Google Renderscript/Filterscript
    • Heterogeneous System Architecture (HSA)

Product Line Overview

Please visit the Vivante homepage to find more information on the Vega product line.

  • GC400L – Smallest OpenGL ES 2.0 Core – 0.8 mm2 in 28nm
  • GC880 – Smallest OpenGL ES 3.0 Core – 2.0 mm2 in 28nm
GC400 Series GC800 Series GC1000 Series GC2000 Series GC3000 Series GC4000 Series GC5000 Series GC6000 Series GC7000 Series
Vega-Lite Vega 1X Vega 2X Vega 4X Vega 8X
Core Clock in 28HPM (WC-125) MHz 400 400 800 800 800 800 800 800 800
Shader Clock in 28HPM (WC-125) MHz 400 800 1000 1000 1000 1000 1000 1000 1000
Pixel Rate
(GPixel/sec, no overdraw)
200 400 800 1600 1600 1600 1600 3200 6400
Triangle Rate
(M tri/sec)
40 80 123 267 267 267 267 533 1067
Vertex Rate
(M vtx/sec)
100 200 500 1000 1000 2000 2000 4000 8000
Shader Cores (Vec 4)
High/Medium Precision
1 1 2 4 4/8 8 8/16 16/32 32/64
High/Medium Precision
3.2 6.4 16 32 32/64 64 64/128 128/256 256/512
API Support
OpenGL ES 1.1/2.0
OpenGL ES 3.0 Optional Optional
OpenGL 2.x Desktop
OpenVG 1.1
OpenCL 1.2 Optional Optional
DirectX11 (9_3) SM3.0 Optional Optional
Key: ✓  (Supported)   – (Not supported)